
Aliasing and endianness
in C99/C++11

 and
data transfer between hard real-
time systems on modern RISC

processors
Erik Alapää
FOSS-Sthlms Linuxhackardag 1:a juni 2013

Background

Issues such as aliasing and endianness are
important in many contexts, such as
networking.

This talk was inspired by work on a messaging
protocol between two RISC CPUs, one (here
called system B) running a common hard real-
time OS, the other (system S) running without
OS, and almost all code running in interrupt
context.

Background, continued

System B (B for Big): Big-endian, ~2 GHz PowerPC CPU,
64 MB RAM, Full-blown hard real-time OS.

System S (S for Small): Little-endian, ~100 MHz RISC CPU
(2 different architectures supported), 64K data RAM, 128K
RAM for instructions (!) No MMU (no virtual memory), no
heap, no OS. So no malloc/free, new/delete. No C++ STL,
except for in tests.

Both systems are built with gcc, mainly C++ but also some
C. Messaging protocol supports both C and C++.

System overview with mailbox

System B

System S

Mailbox

Mailbox

● Architecture is word-oriented. Reading and writing 32-bit
words is handled transparently with regard to
endianness.

● Typical mailbox message is 3 words, one word for
header, one word for message type, and one word for
message data, if necessary

● Maximum mail size is 64 words, i.e. 256 bytes.
● Fragmented mails used for messages > 64 words. (4-bit

frag # in header => 16 fragments => max msg size =
16x64 words)

Definition

Big-endian: Multibyte quantities are laid out in
memory with the most significant byte on the
lowest byte address.

Little-endian: Multibyte quantities are laid out in
memory with the least significant byte on the
lowest byte address.

Intel X86: little-endian. Most RISC CPUs and Internet: big-
endian. ARM and PPC can do both.

Data structures, bitfields (non-
portable, removed)
struct B2SIfHeader {

U32 size: 12; // 12-bit payload
 // length in bytes

U32 fragNr: 4; // 4-bit fragment nr
U8 src;
U8 dest;

};
The size should always occupy the 12 most significant bits
in the 32-bit header, followed by fragNr, src, dest.
On little-endian machines, the order of the struct
subelements is reversed, since most (all?) C compilers
want the first struct subelement on the lowest byte address.

Bitfields and portability

For some reason, the C/C++ standard commitees have
never made bitfields portable (does anyone in audience
know why? I do not).

In mailbox, we ended up removing all bitfields and handling
the message header as a complete U32 (our uint32_t)
using only bitshifts and bitwise AND/OR. Note that CPU
registers are usually at least 32 bits, so e.g masking out the
12 most significant bits can be done endianness-
independently.

As a sidenote, we also tried removing all function-like
macros and used std C/C++ inline functions instead.
Macros are stone-age, IMHO.

With this background...

... now we are ready to talk about strict aliasing
and the 'restrict' keyword! We also get more
understanding of the difference between an
array and a pointer in C/C++.

What is strict aliasing?

● assumption by the compiler that fundamentally different
pointer types do not point to the same memory area, i.e.
do no alias each other

● int* and short int* are fundamentally different.
● const int*, unsigned int* and int* are not fundamentally

different
● a char* can alias anything, even under strict aliasing
● assymetry: char* can alias anything, but nothing can

alias a char*...

What is strict aliasing?, cont.

● types within a union may alias each other
● strict aliasing allows the compiler to produce efficient

code
● present in C and C++ long before C++97/C99, but made

more visible when gcc started enforcing strict aliasing
with e.g. -O3 optimization level

The 'restrict' keyword in C99

Even under strict aliasing, pointers of the same
type may alias. This can force the compiler to
produce extremely slow code. Next example
shows a typical case.

Example
typedef struct vector3 vector3;

struct vector3
{
 float x;
 float y;
 float z;
};

void move(
 vector3* velocity,
 vector3* position,
 vector3* acceleration,
 float time_step,
 size_t count);

How do we know that e.g. the vector3 pointers do not alias? They may
overlap...

Example, continued

If, instead, we used arrays at file scope, the
compiler would know that the arrays were
completely non-overlapping data stripes:

vector3 velocity[PARTICLE_COUNT];
vector3 position[PARTICLE_COUNT];
vector3 acceleration[PARTICLE_COUNT];

void
move(float time_step);

Example, continued

The restrict keyword enables us to specify the
same data stripe structure without file scope
arrays:

Example, continued
void move(
 vector3* velocity,
 vector3* position,
 vector3* acceleration,
 float time_step,
 size_t count,
 size_t stride)
{
 float* restrict acceleration_x = &acceleration->x;
 float* restrict velocity_x = &velocity->x;
 float* restrict position_x = &position->x;
 float* restrict acceleration_y = &acceleration->y;
 float* restrict velocity_y = &velocity->y;
 float* restrict position_y = &position->y;
 float* restrict acceleration_z = &acceleration->z;
 float* restrict velocity_z = &velocity->z;
 float* restrict position_z = &position->z;
 ...

Example, continued

Tree of pointers. Don't use the parent pointers
in same scope, this will violate the restrict
contract and cause UB (Undefined Behavior).
Might crash your program or cause Michael
Bublé to start singing on your mother's
doorstep...
 |---> velocity_x
velocity -------|---> velocity_y
 |---> velocity_z

 |---> position_x
position -------|---> position_y
 |---> position_z

 |---> acceleration_x
acceleration ---|---> acceleration_y
 |---> acceleration_z

Retrofit existing code with restrict

New official declaration of memcpy():

void* memcpy(

 void* restrict s1,

 const void* restrict s2,

 size_t n);

Reference

http://www.unix.com/apropos-man/All/0/man/

indicates that OpenSolaris 2009.06, POSIX and OSX 10.6.2 have 'restrict'
memcpy, Linux and FreeBSD 8.0 do not.

http://www.unix.com/apropos-man/All/0/man/
http://www.unix.com/apropos-man/All/0/man/

Modified memcpy, more info
So, no restrict in Linux memcpy?
From /usr/include/string.h on Kubuntu 12.04.2 LTS and SuSE 10.4:

/* Copy N bytes of SRC to DEST. */
extern void *memcpy (void *__restrict __dest,
 __const void *__restrict __src, size_t __n)

 __THROW __nonnull ((1, 2));

Want to read more?

http://cellperformance.beyond3d.
com/articles/2006/05/demystifying-the-restrict-
keyword.html

http://cellperformance.beyond3d.com/articles/2006/05/demystifying-the-restrict-keyword.html
http://cellperformance.beyond3d.com/articles/2006/05/demystifying-the-restrict-keyword.html
http://cellperformance.beyond3d.com/articles/2006/05/demystifying-the-restrict-keyword.html
http://cellperformance.beyond3d.com/articles/2006/05/demystifying-the-restrict-keyword.html

No 'unrestrict' in C99...
Weblkml.org
From (Linus Torvalds)
Subject Re: Invalid compilation without -fno-strict-aliasing
Date Wed, 26 Feb 2003 17:26:37 +0000 (UTC)

In article <20030225234646.GB30611@bougret.hpl.hp.com>,
Jean Tourrilhes <jt@bougret.hpl.hp.com> wrote:
>
> It looks like a compiler bug to me...

Why do you think the kernel uses "-fno-strict-aliasing"?

The gcc people are more interested in trying to find out what can be
allowed by the c99 specs than about making things actually _work_. The
aliasing code in particular is not even worth enabling, it's just not
possible to sanely tell gcc when some things can alias.

...

I tried to get a sane way a few years ago, and the gcc developers really
didn't care about the real world in this area. I'd be surprised if that
had changed, judging by the replies I have already seen.

I'm not going to bother to fight it.

Linus

Exercise

What does the following code do? What was the intent of
the programmer? Put the code in a program, compile it with
'-O3' (optimization level 3).

uint32_t
swap_words(uint32_t arg)
{
 uint16_t* const sp = (uint16_t*)&arg;
 uint16_t hi = sp[0];
 uint16_t lo = sp[1];

 sp[1] = hi;
 sp[0] = lo;

 return (arg);
}

Aliasing bug!

Code on previous slide does not comply with
strict aliasing rules. However, testing it with gcc
on a 32-bit X86 Kubuntu machine did not show
the bug. Neither did gcc on Raspbian
(ARM1176JZFS CPU). Same with clang, the
gcc competitor. A good developer i know got
the bug to show on an ARM-based cell phone
with gcc.

I first heard of strict aliasing in 2006, when a program I
wrote worked with -O0, but not with -O3...

So, how do we use unions to avoid
aliasing bugs?

First, we define a union containing the data (not
the pointers) we want to be able to alias:

typedef union
{
 uint32_t u32;
 uint16_t u16[2];
} U32;

Using unions to avoid aliasing bugs,
continued
uint32_t
swap_words(uint32_t arg)
{
 U32 in;
 uint16_t lo;
 uint16_t hi;

 in.u32 = arg;
 hi = in.u16[0];
 lo = in.u16[1];
 in.u16[0] = lo;
 in.u16[1] = hi;

 return (in.u32);
}

Standards legaleze:

Type-punning through a union is not strictly
allowed by the standards. However, type-
punning is so common in C and C++ that it
always works in practice. If it does not, your
compiler is broken.

Casting through char* also works

It is always presumed that a char* may refer to an alias of
any object. It is therefore quite safe, if perhaps a bit
unoptimal (for architecture with wide loads and stores) to
cast any pointer of any type to a char* type.

Might also be useful to write a memcpy with char* instead
of void*. However, one advantage of your compiler's
memcpy may be that it is more efficent.

Casting through char*, continued
uint32_t swap_words(uint32_t arg)

{

 char* const cp = (char*)&arg;

 const char c0 = cp[0];

 const char c1 = cp[1];

 const char c2 = cp[2];

 const char c3 = cp[3];

 cp[0] = c2;

 cp[1] = c3;

 cp[2] = c0;

 cp[3] = c1;

 return (arg);

}

Aliasing warnings in gcc
Compiler switches from open-source Enea LINX for Linux:

-std=gnu99 -Wall -pedantic -Wstrict-aliasing=2 -O2 -DNDEBUG

gcc 4.1.2 on a 32-bit X86 with SuSE Linux 10.4 does not give aliasing warnings
when compiling linx_bmark from linx-2.5.1 package.
With gcc-4.7.2 on same machine we get e.g.
linx_bmark_attach.c: In function 'test_once':

linx_bmark_attach.c:108:23: warning: dereferencing type-punned pointer
might break strict-aliasing rules [-Wstrict-aliasing]

linx_bmark_attach.c:120:22: warning: dereferencing type-punned pointer
might break strict-aliasing rules [-Wstrict-aliasing]

linx_bmark_attach.c:131:22: warning: dereferencing type-punned pointer
might break strict-aliasing rules [-Wstrict-aliasing]

Aliasing warnings with gcc, cont
 int len;

 struct sockaddr_linx to; // Definition of struct on next slide
 socklen_t socklen;

 int sd = linx_get_descriptor(linx);

 sig = (void *)buf; // sig is declared as 'union LINX_SIGNAL *sig', see next slide
 socklen = sizeof(struct sockaddr_linx);

 to.family = AF_LINX;

 to.spid = test_slave;

 sig->sigNo = ATTACH_TEST_REQ;

 len = sendto(sd, sig, sizeof(LINX_SIGSELECT), 0, // - row 107
 (const struct sockaddr *)(void *)&to, socklen); // - row 108

Aliasing warnings with gcc, cont
union LINX_SIGNAL {

 LINX_SIGSELECT sigNo;

};

...

/* The LINX sockaddr structure. */

struct sockaddr_linx {

 sa_family_t family; /* Shall be set to AF_LINX */

 LINX_SPID spid; /* An illegal spid is set to 0, other values

 * are considered legal. */

}; LINX_SPID is just typedef:ed to uint32_t.
...

union LINX_SIGNAL *sig,

...

static char buf[65536]; /* buffer used when not using linx api. */

...

Aliasing warnings with gcc, cont
I beleive the warning is from variable 'sig' or from variable 'to', probably 'sig',
since it points to a union and is used in type-punning (from a char-buffer 'buf)'.
Cast involving (struct sockaddr*) are bread-and-butter of socket coding
everywhere, so if that is the culprit, the example is maybe not optimal. But it is
good to know that gcc is still evolving, 4.7.x does more on aliasing than 4.1.x.

Excerpt from release notes of gcc-4.5, under 'General Optimizer
Improvements':

● The infrastructure for optimizing based on restrict qualified pointers has
been rewritten and should result in code generation improvements.
Optimizations based on restrict qualified pointers are now also available
when using -fno-strict-aliasing. (my italics)

Aliasing warnings with gcc, cont

http://gcc.gnu.org/onlinedocs/gcc/Restricted-Pointers.html

Advice from the experts

Simplify expressions. Do not mix memory
access with calculations. Use the [Load -->
Update --> Store] pattern.

Advice, continued

● Strict aliasing means that two objects of different types
cannot refer to the same location in memory. Enable
this option in GCC with the -fstrict-aliasing flag. Be sure
that all code can safely run with this rule enabled.
Enable strict aliasing related warnings with -Wstrict-
aliasing, but do not expect to be warned in all cases.

● Compare the assembly output of the function with
restricted pointers and file scope arrays to ensure that
all of the possible aliasing information has been used.

● Only use restricted leaf pointers. Use of parent pointers
may break the restrict contract.

● Publish as many assumptions as possible about
aliasing information in the function declaration.

Advice, continued

● Memory windows may be overlapping and still be
without aliases. Do not limit the data design to non-
overlapping windows.

● Begin using the restrict keyword immediately. Retrofit
old code as soon as possible.

● Keep loads and stores separated from calculations. This
results in better scheduling in GCC, and makes the
relationship between the output assembly and the
original source clearer.

My own thoughts

● Trying to produce aliasing-clean code using unions is
possible, but can be frustrating. Aliasing is still not
mentioned in most C/C++ books!

● C and C++ are fundamentally byte-oriented languages.
E.g. the sizeof () operator returns size in bytes, a char*
can alias anything...

● Most modern archictectures are not byte-oriented, e.g.
use 32-bit or even wider loads and stores. The buses in
the mailbox project are endianness-transparent and
work only with 32-bit loads and stores.

Aaargh! I still want to do this:
Maybe Linus Torvalds simply is right, as usual? We just want to do our work
and not have the compiler clusterf**k our code...
int Mailbox_GetMessage(
 union Message** msg,
 uint16_t* msgSize,
 uint8_t* source,
 uint8_t* dest)
{

uint32_t* buf;
 ...

msg = (union Message)&buf[1];
 // buf[0] is header, invisible to user

return 0; // Processing OK
}

Ideas?

Sometimes, we want to use C or C++ as portable
assembler.

Maybe we could have a switch that tells the compiler 'do
not optimize this function, just do a straight translation to
assembler, whatever that is. And warn me and maybe hint
of ways of making the code faster, but do not change
anything. If the C/C++ code is stupid, the compiler should
just translate it anyway.'

The compiler could e.g. hint that a 'restrict' on some
vars/parameters may help it do a straighter translation.
Maybe something for the clang developers?

So, how did all this affect the design
of the mailbox API?

● Disclaimer: Still work in progress, we modified the
mailbox internals yesterday to remove gcc 4.7
warnings...

● Some design similarities to Enea LINX open-source
API. Thank you, LINX hackers. It is always nice to learn
from prior art, good code by good programmers!

● No memcpy() on target (used in unit and integration
tests on our workstations, though)

● union Message {} used for payload part of messages,
API handles Message*, makes strict aliasing much less
of an issue for clients

● As already mentioned, no bitfields
● Avoid macros, use C99/C++ inline functions where

deemed necessary

Mailbox API design bullets, cont.

● Mailbox tries handling strict aliasing internally
● union Message contains different messages for different

clients, usually small (3-10 word payload) messages
● Receive side of Mailbox internally uses a definition of

union Message {} containing an uint32_t buffer, 16*64
uint32_t words. Big! (on our little RISC CPU)

● Send side of mailbox is leaner, but not formally aliasing-
free. But gcc 4.7 does not complain.

● Message {} being different in different places makes Lint
angry... Had to add some Lint suppressions.

● Interesting design Q: Some experts advocate using char
buffers instead, since char* is special in C/C++ and can
alias anything. But at least, we are aliasing-free in gcc
4.7 with our uint32_t buffers...

Final thoughts, ramble mode <ON>

Low-level C and C++ programmers need to get in the habit
of looking at the assembly code the compiler generates, at
least every once in a while. But I am an X86 ASM illiterate,
and I hope we can soon kick the arcane, huge, disgusting
X86 instruction set onto the scrap-heap of history. Heck,
already in the early 80s there were beautiful, clean archs
like Motorola 68K...

Give me a fast, reasonably priced MIPS-based big-endian
Linux machine that can replace my X86 Linux Thinkpad
and I'll read gcc or clang assembly output every day! (of
course, I can install a cross compiler, but this is often not
practical)

That's all, folks!

Thank you for listening!

